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Deep Learning

* Based on neural networks

e Uses deep architectures

* Very successful in many applications
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Neuron Models

® The choice of activation function 1 determines the
neuron model.

Examples:
. aifv<c
e step function: (P(V):{b if v>cC
aifv<c
e ramp function: p(v)=1b if v>d
a+((v—c)(b—a)/(d —c)) otherwise

® sigmoid function with z,x,y parameters 1

V) =z
?(v) +1+ exp(—Xxv+vYy)

® Gaussian function: 1 { 1(V—u ZJ
exp ( j




Sigmoid unit

f is the sigmoid function £ (x)

Derivative can be easily computed:

Logistic equation df (x)
.g used ?n many applications =1 (X)(l_ f (X))
« other functions possible (tanh)

Single unit:
 apply gradient descent rule

Multilayer networks: backpropagation




Multi layer feed-forward NN (FFNN)

® FFNN is a more general network architecture, where there are
hidden layers between input and output layers.

e Hidden nodes do not directly receive inputs nor send outputs to
the external environment.

® FFNNs overcome the limitation of single-layer NN.

® They can handle non-linearly separable learning tasks.
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Backpropagation

* Initialize all weights to small random numbers

* Repeat
For each training example
1. Input the training example to the network and compute the network outputs
2. For each output unit k
& < 0 (1 -0y (t,—0y)
3. For each hidden unit h

% < Oy (1 o Oh) Zkeoutputs Wk,h@
4. Update each network weight w;;



NN DESIGN ISSUES

e Data representation
e Network Topology

e Network Parameters
® Training

e Validation



Expressiveness

 Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer (Cybenko et al ‘89)
 Hidden layer of sigmoid functions
 Output layer of linear functions

« Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
(Cybenko “88)

 Sigmoid units in both hidden layers
 Qutput layer of linear functions



Choice of Architecture Neural Networks

* Training Set vs Generalization error
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Motivation for Depth

Large, Shallow Models Overfit More
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Motivation: Mimic the Brain Structure
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Motivation

* Practical success in computer vision, signal processing, text mining
* Increase in volume and complexity of data

* Availability of GPUs



Convolutional Neural Network: Motivation

Hierarchical organization Simple cells

Response to light
orientation

Retinal ganglion cell LGN and V1 Complex cells:

receptive fields simple cells Response to light

orientation and movement

Hypercomplex cells:
response to movement
with an end point

lllustration of hierarchical organization in early visual

pathways by Lane Mcintosh, copyright CS231n 2017 NO response Respon se

(end point)



Classification error
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CNN
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lllustration of LeCun et al. 1998 from CS231n 2017 Lecture 1



Convolutional Layer Can be

implemented
efficiently with
convolutions
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Pooling Layer
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Single depth slice

Max Pooling Layer
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Fully Connected Layer

i ’

[1x1x4096] “neurons”

[7X7x512]

Every “neuron” in the output:
1. computes a dot product between the

input and its weights f= wlz + b

2. thresholds it at zero f(:I!) — mam(ﬂ,m)



Every layer of a ConvNet has the same API:

- Takes a 3D volume of numbers

- Outputs a 3D volume of numbers

- Constraint: function must be differentiable
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What do the neurons learn?

Low-Level_Mid-Level High-l.evel_. Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Example activation maps
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Training

Loop until tired:

1. Sample a batch of data

2. Forward it through the network to get predictions
3. Backprop the errors

4. Update the weights



ResNet
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Full ResNet architecture:
 Stack residual blocks
* Every residual block has two 3x3 conv layers

 Periodically, double # of filters and
downsample spatially using stride 2 (in each
dimension)

* Additional conv layer at the beginning

* No FC layers at the end (only FC 1000 to
output classes)



Densenet
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Figure 2. A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change

feature map sizes via convolution and pooling.



Challenges of Depth

e Qverfitting — dropout
* Vanishing gradient — RelLU activation
* Accelerating training — batch normalization

* Hyperparameter tuning



Computational Complexity

Comparing complexity...
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An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.



Types of Deep Architectures

* RNN, LSTM (sequence learning)
 Stacked Autoencoders (representation learning)
* GAN (classification, distribution learning)

* Combining architectures — unified backprop if all layers differentiable
* Tensorflow, PyTorch
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